
rir ,

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
THE REAL-TIME ROLL-BACK AND RECOVERY OF

TRANSACTIONS IN DATABASE SYSTEMS

by

David E. Quantock

June 1989

Thesis Advisor: David K. Hsiao

Approved for Public Release; Distribution is Unlimited

DTIC
ELECTE

S D

89 Xi ~ A

REPORT DOCUMENTATON PAGE
I& REPORT SEC'jR;, Y C.A S,CA ON lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURiTY CLASSJ;LAT,0N A: Tr4)-J.Ty 3 DISTRIBUTION, AVAILABILITY OF REPORT

Approved for Public Release;
2b DECLASSIFICATi0!v DO'.rNGkA:)JG SCHEDJLE Distribution is Unlimited

4 PER:ORMINC- C . Z.110% R PRT NUMobE PIS, 5 MONITORING ORGANIZATION REPORT NUMBERIS,

6a NAME OF PERFORMING ORGAr.IZATIO% r6D OFFICE SyVMBO 7a NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School Code 52 Naval Postgraduate School

6c ADDRESS (Cst). State, and ZIP Cooe) 7b ADDRESS (City, Slate. and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a NAME O - F'JDNG SPONSORI'YG 8D OrF'C- SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

bc ADDRESS (Ci). State. ana ZP Coae; 1i SOURCE C: F JND,N'G '%_'%:r.P

PROGRAW PROJEC' TASK .,) UNIT
ELEMENT NO NO NO 1 ,CCESSiON NO

11 TOT LE (incluae Securit) C,a$,dicarior

THE REAL-TIME ROLL-BACK AND RECOVERY OF TRANSACTIONS IN DATABASE SYSTEMS

12 PEPSONA. AJ-'
Quantock, David E.

13, TYPE .O: [; ,z"'.t,-. i -'- D E C,: PESO01 (Year Morith.Oak. " c .. CC,%

Master's Thesis _._ 1989, June 94

"- K" ') - $' - .Ei].. . , C ontinue on reverse iT necessa', anJ foenti, 0, b;o'(numbfr)

:. Roll-back and Recovery, Multilingual Database System,

Multibackend Database System, incremental Logging,
Differential Files, Shadow Paging, Backend Transaction Lcg.

" A °FLI
"

fCor--,n . C, f. ".sc:;,a,, an-r iOrT,#, 0, bior', nurrOet,

A modern database transaction may involve a long series of updates, deletions, and insertions
of data and a complex mix of these primary database operations. Due to its length and
complexity, the transaction requires back-up and recovery procedures. The back-up procedure
allows the user to either commit or abort a lengthy and complex transaction without
compromising the integrity of the data. The recovery procedure allows the system to maintain
the data integrity during the execution of a transaction, should the transaction be
interrupted by the system.

With both the back-up and recovery procedures, the modern database system will be able to
provide consistent data throughout the life-span of a database without ever corrupting either
its data values or its data types.

However, the implenentation of back-u. and recovery prgcedures in P databas system i,,
* -. ' . L. - ..= -A -: ' ;'" i , A z' ; *A..

Unclassified

DD F.O. .. 14...-,. . . ,.

i UCLASSIFIL.

SIRCUcTV CLAUIPICATION OP T1il PA&9

#19 - ABSTRACT - (CONTINUED)

a difficult and involved effort since it effects the base as well as meta
data of the database. Further, it effects the state of the database system.
This thesis is mainly focused on the design trade-offs and issues of imple-
menting an effective and efficient mechanism for back-up and recovery in the
multimodel, multilingual, and multibackend database system.

Accession For

NT IS - C R A&I -

DTIC TAB 0
Unannounced 0 -,

Justiflettio-

By ,

Distr.bution/

Availability Codes

Avail and/or
Dist Special

UN C.A S [S T TT
ii s LECURITY CLASISICATION OF T S PAGE

Approved for public release; distribution is unlimited

The Real-Time Roll-Back and Recovery of Transactions in Database
Systems

by

David E. Quantock
Captain, United States Army

B.A., Norwich University, 1980
M.S., Troy State University, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author:

Approved by: A,4 1 [,'- i'? t,-'--

David K. Hsiao, Professor of Computer Science
Thesis Advisor

Thomas Wu, A ogate Professor of Computer Science
-Second Reader

Robert McGhee, Chairman
Department of Computer Science

Kneale T. Mi-shall _\

Dean of Information and Policy Sciences

ABSTRACT

A modem database transaction may involve a long series of updates,

deletions, and insertions of data and a complex mix of these primary

database operations. Due to its length and complexity, the transaction

requires back-up and recovery procedures. The back-up procedure allows

the user to either commit or abort a lengthy and complex transaction without

compromising the integrity of the data. The recovery procedure allows the

system to maintain the data integrity during the execution of a transaction,

should the transaction be interrupted by the system.

With both the back-up and recovery procedures, the modem database

system will be able to provide consistent data throughout the life-span of a

database without ever corrupting either its data values or its data types.

However, the implementation of back-up and recovery procedures in a

database system is a difficult and involved effort since it effects the base as

well as nieta data of the database. Further, it effects the state of the database

system. This thesis is mainly focused on the design trade-offs and issues of

implementing an effective and efficient mechanism for back-up and

recovery -i the multimodel, multilingual, and multibackend database system.

iv

iv

TABLE OF CONTENTS
1. INTRODUCTION .. 1

A. THE MOTIVATION ... 1

1. Roll-back and Recovery Issues ... 2

2. Design Decisions .. 3

B. TH'E SYSTEM BACKGROUND ... 4

1. The Multilingual Database System 5

2. The Multibackend Database System 9

C. THESIS ORGANIZATION ... 12

II. ROLL-BACK ALGORITHM OPTIONS .. 13

A. OVERVIEW OF THE THREE GENERAL ALGORITHMS .13

B. MODELS OF THREE GENERAL ALGORITHMS 13

1. Incremental Logging ... 14

a. Algorithm Description ... 14

b. Advantages .. 16

c. Disadvantages .. 17

2. Differential Files .. 17

a. Algorithm Description ... 18

b. Advantages 20

c. Disadvantages .. 21

V

3. Shadow Paging *....................... .*......... 21

a. Algorithm Description ... 21

b. Advantages .. 22

c. Disadvantages 22

C. SUMMARY AND CONCLUSIONS .. 25

III. IMPLEMENTATION ISSUES ... 29

A. IMPLEMENTATION CONSIDERATIONS 29

1. Problem Specification ... 29

2. Modifications to the Differential Log 29

3. Placement and Description of the Log 31

B. THE CENTRALIZED APPROACH 31

1. User Interface .. 33

2. General Algorithm .. 35

3. Advantages ... 38

4. Disadvantages .. 38

C. THE DECENTRALIZED APPROACH 38

1. User Interface .. 39

2. General Algorithm .. 41

3. Advantages .. 44

4. Disadvantages .. 45

D. SUMMARY AND CONCLUSIONS 45

vi

IV. THE BACKEND TRANSACTION LOG (BTL) 48
1. The Data Structure ..-. 48

2. Decomposition View of the Algorithm 50
3. The Algorithm .. 0........... 53

4. Summary*...62

V. CONCLUSIONS 64

APPENDIX .. 68

LIST OF REFERENCES .. 82

BIBLIOGRAPHY .. 84

INITIAL DISTRIBUTION LIST... 85

vii

LIST OF FIGURES

1. The Multilingual Database System (MLDS) 6

2. Multiple Language Interfaces for the Same KDS 8

3. The MBDS Process Structure .. 11

4. Incremental Logging on MBDS Hardware Organization 15

5. Differential File on MBDS Hardware Organization 19

6. Shadow and Current Page Tables ... 24

7. Backend Transaction Log ... 32

8. Centralized BTL User Interface .. 34

9. Centralized Backend Transaction Log (BTL) 36

10. Decentralized BTL User Interface ... 40

11. Decentralized Backend Transaction Log (BTL) 42

12. The Data Structure of the Backend Transaction Log 49

13. A Decomposition Diagram .. 51

14. SEARCHFORPTRARRAY .. 54

15. The BTL Initialization ... 56

16. Sending RETRIEVEs to Directory Management 57

17. Update the RETRIEVEREQUEST ... 60

18. Transaction Inserted into the Database .. 61

viii

I. INTRODUCTION

A. THE MOTIVATION

Roll-back and recovery is the return of a database system to its previous

state after a user error, application error, partial system failure, or supervisor

request. Not only must the system return to a previous state, but the

database must return to a consistent and correct state. In order to return to a

consistent state, the Database Management System (DBMS) must be able to

keep track of ongoing transactions and abort and roll-back uncommitted

transactions if the system is interrupted.

Roll-back and recovery is a very important component of a database

system. Even with its great importance, few articles have been written on

this subject as compared to articles on data models, schema design, query

languages, access paths, and locking and concurrency contiol. It would

seem that the main reason for this is that system errors are negligible when

compared to the total throughput of a computer system. But although there

are few system errors, the overhead incurred by a roll-back and recovery

algorithm can have a major impact on the system's overall performance. In

addition, the inconsistent and incorrectness of the database and states of

DBMS due to the lack of roll-back and recovery may be incalculable.

1. Roll-back and Recovery Issues

Over the past decade the area of roll-back and recovery has matured

as database systems have become increasingly complex. In a single-user

system, transactions are put into the system and committed in a serial

fashion. If there is a system failure, the user will have to reenter the last

transaction if it had not been committed. There is no single-user system

available that could give the user the ability for supervisor roll-back. By

supervisor roll-back we meant that the supervisor could put in a test

transaction and see the results and then undo the results of the transaction if

desired.

Now in the era of distributed computer databases, you have databases

distributed over a network with multiple users trying to access the data. This

requires a much more complex DBMS to handle the many user transactions

and then roll-back to a consistent database in the event of a system interrupt.

Articles written on roll-back and recovery all seem to concentrate on

roll-back after a system failure [Refs. 1,2,3,4,5,6,7,8,9,10,11]. In 1981 a

study was done by IBM on the performance of their first relational database

system, System R [Ref. 3:p. 226]. One of their findings was that 97% of all

transactions execute successfully. In the remaining 3% of the transactions,

almost all result from incorrect user input. Less than 1% of the transactions

are aborted because of system failure (i.e., system overload or deadlock). It

2

was these findings that generated the feeling that roll-back and recovery

may have other applicat:)ns other than recovery from system error.

A very powerful extension of roll-back and recovery would be the

ability to insert a transaction, allow the supervisor to see the results of that

transaction, and then if he/she liked the results, have the transaction

committed to the database. If the results were unsatisfactory to the

supervisor, then the supervisor could invoke what we call a supervisor roll-

back. Supervisor roll-back would restore the system to its previous

database state. This would allow the supervisor to do a number of tests

without committing the database to the transactions. This would be an

extremely valuable management tool for testing proposed changes to a

database.

2. Design Decisions

In designing a roll-back and recovery algorithm there is a number key

factors that must be taken into consideration. First, it incurs modest storage

overhead for the duplicated data that is brought into the main memory. For

example, a system that duplicates the entire database for each transaction

will quickly run out of storage. Second. the type of data structure that stores

the data should hold only the data it needs and should dynamically grow and

shrink to fit the system needs. Third, the cost of the storage overhead versus

the number of rollbacks required. A system that seldom has a need to roll-

back should have a different algorithm then a system that frequently rolls-

3

back. Fourth, it should permit parallelism to the maximum extent possible

to satisfy system performance requirements. A system could always

guarantee a consistent view of the database and fast recovery if it serially

executed each transaction. But the costs of serial execution negate any

performance benefit of a concurrent system. Additionally, the level of

granularity must be to the level that offers maximum concurrency. For

example, the granularity of page logging is generally more costly than entry

logging. The reason for this is simply that in page logging the entire contents

of the page is logged as opposed to entry logging where only the specific

record or modified record is logged. The cost is in terms of increased storage

requirements and execution time. Furthermore, page logging implies page

locking which impedes concurrency. [Ref. 7:p. 556] Fifth, it should

perform satisfactorily in a network environment that has some measure of

communication delay. Sixth, the overhead during normal performance

should not be degraded by the roll-back and recovery mechanism. Seventh,

recovery speed during roll-back should not cause major delays to the users.

Eighth, software complexity of the recovery mechanism needs to be as

simple as possible to prevent system delays. And finally, the recovery

system must be reliable.

B. THE SYSTEM BACKGROUND

The vehicle for studying this roll-back and recovery algorithm is the

multilingual database system (MLDS) developed at the Naval Postgraduate

4

School and Ohio State University [Ref. 12,13,14,15]. In this section, we

give the reader some background material on the system structure and

functions. This will also include an introduction into the architecture of the

multibackend database system (MBDS) used to support MLDS database

transaction processing.

1. The Multilingual Database System

The multilingual database system is depicted in Figure 1. In this

figure, a query, which is written in the user's data language (UDL) (e.g.,

SQL), is sent into the system and is based on the user's data model

(UDM)(e.g., the relational data model). The user's transaction is processed

through the language interface layer (LIL) which routes the transaction to

the kernel mapping system (KNIS). KMS performs two functions. If the

user is creating a new database, then the first function for KMS is to

transform the database in UDM into an equivalent database in the kernel

data model (KDM). In other words, a schema is made up for the

transformation of the database in the user model into one in the system's

model. KMS then sends the new schema to the kernel controller subsystem

(KCS) which in turn sends the KDM-database definition to the kernel

database system (KDS). After KDS has received the new KDM-based

schema, it notifies KCS who notifies the user that the database may now be

loaded.

5

KFS

UDM :User Data Model Data Language
UDL :User Data Language
LIL :Language Interface Layer
KMS :Kernel Mapping System Da o
KC :Kernel Controler Data Model
KFS :Kernel Formatting System
KDM :Kernel Data Model
KDL :Kernel Data Language [J System Module
KDS :Kernel Database System

Information Flow

Figure 1. The MultiLingual Database System (MLDS)

6

After the schema of the database has been laid out, the second task of

KMS is to handle transactions from the user. When a user sends in his

query, the UDL (e.g., SQL query), KMS translates the query into the an

equivalent KDL version. KMS then sends the KDL transaction to KDS for

execution. KDS retrieves or executes the transaction and then sends the

results back to KCS in the KDM form. KCS then forwards these results

back to the kernel formatting system (KFS) which transforms the results

from the format in KDM to the UDM. Once the transformation has

completed, KFS sends the results to the user through LIL.

The LIL, KMS, KCS, and KFS components are referred to as the

language interface. For each user-defined language(model), there must be

an interface that takes the user's query(database) and translates(transforms)

it into the kernel language(model-based) query(database). For example,

there exists a set of language interfaces - one for the relational database/SQL

language, another for the hierarchical database/DL/1 language, a third for the

network database/CODASYL-DML language and a fourth for the functional

database/Daplex language as depicted in Figure 2. All of these interfaces

are supported on a single KDS which accesses, stores, and retrieves the data

form the databases.

KDM and KDL of the MBDS are the attribute-based data model

(ABDM) and the attribute-based data language (ABDL), respectively.

ABDL supports the five primary database operations, INSERT, DELETE,

7

UDM KMS

Fiur 2 Ml iLanug Inefae foCheSm KDS

UPDATE, RETRIEVE, and RETRIEVE-COMMON. The first four

operations are obvious. The last operation, RETRIEVE-COMMON, is

equivalent to a relational equijoin which provides the merging of two files

with common attribute values. These five simple database operations are

capable of supporting complex and comprehensive transactions. For a more

detailed discussion of the multibackend database system refer to [Ref. 16].

2. The Multibackend Database System

As each year passes, new systems are developed which increase the

speed and performance of older systems. This is perplexing for the users

who in order to keep up with technology progresses and performance gains,

must continually upgrade their software and hardware. While the

multilingual database system gives the user the flexibility to incorporate

different software interfaces into a system, the concept of the multi-backend

database system (MBDS) gives speed and performance upgrades without the

conventional upgrade costs in hardware.

By using multiple backends configured in a parallel fashion,

performance gains are attained by increasing the number of backends to the

system. MBDS will produce nearly a reciprocal decrease in the response

times for user transactions when the number of backends is increased.

Additionally, if the size of the database increases proportionally with the

number of backends added, there will be little if any degradation in system

performance [Ref. 17].

9

One of the major design goals of MBDS was to develop a system that

maximized the work of the backends and minimize the work of the

controller. In Figure 3, the top half of the diagram depicts the controller and

the bottom half the backend. The controller can communicate with 1 or

more backends over a local-area network. The controller has three (3)

primary functions. First, the controller prepares a request for execution by

the backends. This request is performed by the request preparation of the

controller. Secondly, the controller coordinates responses from the

backends. This function is performed by the post processing. And lastly,

the insert information generator (IIG) maintains a status on the current

storage capacity of each backend. When an insert request is generated, HG

sends the insert to a specific backend based on the current status of database

storage.

The backend also has three but different primary responsibilities:

directory management, concurrency control, and record processing. First,

the directory management receives incoming messages from the controller.

The directory manager determines the addresses of the records required to

process a particular request. Secondly, the concurrency control allows

concurrent accesses to the database by different requests. And lastly, the

record processing section performs data retrieval, storage, and the

processing required on any particular record.

10

THE CONTROLLER

CLUSTER ID
GENERATOR INSERT INFORMRTION

GENERRTOR

FACKND DESCRIPTOR ID
SELECTOR GENERATOR

GET PCL PUT PCL

A BACKEND

PUT PCL DIRECTORY CLUSTER jGET PCL

MNRGEMENT SEARCHE

ADDRESS DESCRIPTOR

RECORD I

PRCSIGPHYSICAL 'I
PRCESIGDATA REQUEST INEW

AGGREGATE OPERATION COMPLETE I RIflfI C
OPERATION CONCURRENCY

____ ___ ___ ___ ____ ___ ___ ___CONTROL

Figure 3. The MBDS Process Structure

For communications over the local-area network, there is a pair of

communications processes in each backend and the controller. These

processes are called get pcl and put pcl.

C. THESIS ORGANIZATION

In this thesis, the three general algorithms for roll-back and recovery

were examined: incremental logging, differential files, and shadow paging.

With each algorithm, there are many variations. In Chapter I, we provide a

description of the general algorithms.

In Chapter III, we introduce a general solution and then present two

additional methods to implement the solution. In Chapter IV, we arrive at

the recommended solution for implementation in MBDS by giving a

description of how the algorithm will work. The actual algorithm, written in

pseudo PASCAL, is in the Appendix. Finally, in Chapter V, we make our

conclusions about the proposed design.

12

II. ROLL-BACK ALGORITHM OPTIONS

A. OVERVIEW OF THE THREE GENERAL ALGORITHMS

There are generally three basic algorithms in roll-back and recovery. As

in any area of study there are a number of derivations from these general

solutions. In this Chapter, we describe the three basic algorithms along with

the advantages and disadvantages of each approach.

The first general algorithm is incremental logging. In incremental

logging the technique is to apply the updates directly to the database and

keep an incremental log of all changes to the system state. In the second

general algorithm, differentialfiles, the algorithm calls for a centralized log

which defers all updates until the end of the transaction. And finally,

shadow paging is an alternative to log-based recovery techniques. In

shadow paging, the database is partitioned into pages. During a transaction

a page has a current page table and the shadow page table. All updates are

made to the current page table with the shadow page table as the recovery

source in case the transaction fails. These three methods will be discussed in

much greater detail in the sections that follow.

B. MODELS OF THREE GENERAL ALGORITHMS

It should be noted that a transaction is decomposed into a number of

requests that are executed to perform the transaction. Each request is treated

as an atomic item. As each request of a transaction completes, the

13

transaction remains in a partially committed state until all requests of the

transaction have been completed.

1. Incremental Logging

As stated earlier, the incremental log is a centralized file that logs in

transactions. As the transaction is being logged in, it is also being

instantaneously entered into the database. If the system fails or has to roll-

back, then the system must undo the transaction based on the information in

the incremental log.

a. Algorithm Description

Figure 4 depicts the placement of the incremental log if it were

placed in MBDS. As each transaction enters the controller, the system

would immediately modify the database or retrieve the data (arrow number

1, Figure 4). In addition, if a write is involved, the system annotates in the

incremental log the change to the database (arrow number 2, Figure 4).

Specifically, when a transaction enters the system, a "start" record

is written to the log with the transaction number attached. During the

execution of the transaction, if write operations are encountered they are

entered into the log and simultaneously sent directly to the database for

updating. As a minimum, a record consists of a transaction name, data item

name, old value of the data, and new value of the data. When the transaction

partially commits, a "commit" record is written into the log. As the

transactioncontinues, i.e., the next request is executed, another partially

14

ONE OR MORE DISK
DRIVES PER BACKEND

TO HOSTCOMPUTERI AKN2Sa

MODIFY
72 (WRITE)

INCREMENTAL

:AKEND n goo

BROADCASTING BUS

Figure 4. Incremental Logging on MBDS Hardware Organization

15

committed state is reached. If the system fails in the middle of a request,

then the request that had not completed is undone and the rest of the

transaction that had partially committed is first undone and then redone.

The system is able to accomplish the undo and redo by referring to the

incremental log.

Checkpointing can also be used to reduce the overhead of

searching the log and redoing transactions. checkpointing is done for

primarily two reasons. First, the searching process of the incremental log is

time-consuming. Secondly, most of the transactions that need to be redone

have already made changes to the database and do not need to be redone.

With checkpointing, after a failure has occurred, the system only has to

check the log to its last transaction that started executing before the last

checkpoint. That transaction is undone and then redone. For more

information on checkpointing refer to [Refs. 5,181.

b. Advantages

The advantages of incremental logging are two-fold. First, a

system that runs with this method has the fastest processing time of database

operations. Because the database is instantaneously updated with the

logging operations, there is virtually no performance degradation of the

system. And Secondly, the algorithm is straightforward and therefore easy

to implement. This algorithm gambles that there will be very few roll-backs.

16

c. Disadvantages

Although, incremental logging has the fastest processing time of

the three algorithms, it is also the slowest of the three in roll-back and

recovery. The primary reason for this is that this algorithm directly changes

the database. In the event of a rol-bac':, the system must go out and change

the database. This requires that ali records updated by the transaction be

deleted from the database and all records in the incremental log be retrieved

and inserted into the database. After these two changes have been made, the

system must then delete the record occurrences from the incremental log.

This requires several disk accesses and is therefore very slow.

2. Differential Files

Where incremental logging kept a file of records that were changed

and instantaneously modified the database, a differential file is a log where

all the updates to the database are deferred until the end of the transaction.

The file also consists of an area along with an area processor for data

manipulation that is separate from the area processors assigned to the

database areas. When a transaction needs to update the database, a copy of

the selected records is transferred into the differential file. All of the updates

are modified in the dicferential file and at the end of the transaction all

updated records are merged into the database. In addition, the records in the

differential file are in actuality part of the database, subject to processing by

all queries and therefore require additional bits for marking the records in

17

the differential file. These additional bits identify which is the most recent

version of a record. For example, it the extra bit is 0, then the system knows

that the most recent version of the record still resides in the main database

and therefore the differential file is skipped and the main database is

accessed immediately. To get the most current record, the system searches

the differential file for every record retrieval except in the case where the

extra bit is 0, then the original copy is accessed from the main database.

a. Algorithm Description

Figure 5, depicts the placement of the differential file if it were

placed in MBDS. As each transaction enters the controller, the system logs

the transaction into the differential file. When the transaction completes, the

transaction is sent to the backends to merge into the database.

Specifically, as with incremental logging, when a transaction

enters the system, a "start" record is written to the differential file with the

transaction number attached. During the execution of the transaction, any

write operations are entered into the file. As a minimum, a record consists

of a transaction name, data item name, and new value of the data. When the

transaction partially commits, a "commit" record is written into the file.

After the transaction partially commits, each partially committed record is

written to stable storage in case of a system failure. After the transaction is

completely finished (no more requests), then the actual updating to the

database can take place. Once the transaction has been entered into the

18

ONE OR MORE DISK
DRIVES PER BACKEND

.ACKEND2

LDIFFERENTIAL
TO HOST FILE
COMPUTER

BROADCASTING BUS

Figure 5. Differential File on MBDS Hardware Organization

19

actual database then it enters the committed state. After the transaction

enters the committed state and a checkpoint has been reached, then the entire

transaction is deleted from the differential file.

Where the incremental log had two primary functions, the redo and

undo, the differential file has one function; the redo. Because the system is

not updating the database directly, the only command that needs to be

executed is one that repeats the submission of a transaction to the database

from the differential file. The redo function sets the value of all data items

updated by the transaction to the new values. In order to guarantee correct

behavior even if a failure occurs during the recovery process, the redo

function must be able to execute many times but the net effect must be

equivalent to executing it only once.

b. Advantages

The primary advantage of differential files is that it isolates the

database from physical change by directing all new and modified records

onto a separate and relatively small file of changes. Since the main database

is never changed in the middle of a transaction, the system can quickly

recover from a system failure or roll-back. In other words, transaction

aborts are easily handled by simply discarding the record copy in the scratch

area. Aghili and Severance [Ref. 4] note that a differential file architecture

offers an approximately 77 percent improvement in recovery speed when

compared to a update in-place algorithm (incremental log). For a precise

20

mathematical analysis of the differential file model see Aghili and Severance

[Ref. 41.

c. Disadvantages

Since differential files do not update the database directly, its

major disadvantage is that it requires the additional overhead of reading

differential file pages and the extra CPU overhead to process a query. For a

system that seldom has a need for roll-back, the overhead of a differentin!

file may not be justified.

3. Shadow Paging

As stated earlier, Shadow Paging is an alternative to a log-based

recovery technique. The database is partitioned into a number of fixed-

length pages. The pages are not stored in physical order on the disk.

Instead, the pages are indexed by the use of a page table. The page table has

an entry for each database page stored on disk. The physical order of the

page table depicts the logical order of the data on disk. During a transaction

a page has a current page table and the shadow page table. All updates are

made to the current page table with the shadow page table as the recovery

source in case the transaction fails.

a. Algorithm Description

When the transaction starts, the shadow page table and the current

page table are identical. During the entire duration of the transaction, the

shadow page table is not changed. The current page table, however, is

21

changed when a transaction performs a write operation. All of the input and

output operations use the current page table to locate the database pages on

the disk. During a write operation, if the page required is not in main

memory, then the page is brought into main memory. If this is the first write

performed on this page, then the system must find an unused page on disk

(lrcok at fie,; page list), delete the unused page froin the free page i.st,

modify the current page table so that it now points to the new page, and then

copy and modify the old page with the write. When the transaction

commits, the current page table is written to disk (nonvolatile storage) and

then becomes the shadow page table. In the event of a system crash or

transaction abort, the old shadow page still resides on disk and therefore will

restore the system to its last consistent state.

b. Advantages

Shadow paging offers some advantages over log-based systems.

First, shadow paging eliminates the overhead of logging records. And

secondly, according to Korth and Silberschatz [Ref. 18] recovery is

significantly faster with shadow paging then with log-based systems.

c. Disadvantages

Although, shadow paging has some significant advantages, its

disadvantages eliminate it from further consideration. First, data becomes

extremely fragmented because the pages change location every time they are

updated. This creates a significant change in the physical locality of the

22

pages. Since we want related pages close to one another on disk, we have

violated the locality principle by requiring the system to travel a great

distance (relatively speaking) to find the related data. Gray [Ref. 3] found

that shadow paging was bad for direct (random) processing and for

sequential processing for the reason stated above. The time savings in

recovery have been negated by the reduction in system performance or a

requirement for even higher-overhead schemes for physical storage

management.

Figure 6 depicts the problem of violating the locality principle.

Note that in the shadow page table, page number 4 has been modified by the

current transaction and the current page table is now pointing at the 6th page

on the disk as compared to the 4th page. Once the transaction commits, the

current page table becomes the shadow page table and the physical

relationship between the pages no longer exists. What exists now is a

logical relationship which reauires more disk access time. This speaks

nothing of the fragmentation that is going on as pages become inaccessible

which is the next problem that is addressed.

The second problem with shadow paging is that after each

transaction commits, the old page is lost and becomes inaccessible (i.e., not

free space and no useable information). This creates a severe garbage

collection problem for the system. Garbage collection will add even more

overhead and complexity to the system. Additionally, in order to use a

23

2 2

3 3

4 4

5 5

6 6

SHADOW Page Table Pages on Disk CURRENT Page Table

Figure 6. Shadow and Current Page Tables

24

shadow mechanism, the system requires a large amount (20 percent) of disk

space to hold the shadow pages [Ref. 3].

And the last problem with shadow paging is that it is more difficult

than logging algorithms to adapt to a concurrent operating environment (i.e.,

more than one transaction occurring a one time). In order for shadow paging

to be used in a concurrent environment, the system would have to use a log.

The use of a log would negate the advantage of having a shadow paging

system in the first place. Additionally, the level of granularity is restricted to

the size of a page which further hinders its performance in a concurrent

environment. IBM's first relational system, System R, employed a recovery

manager that used shadow paging. By using shadow paging, they also were

forced into the use of an incremental log. Gray states [Ref. 3, p. 231] that

they were unable to architect a transaction mechanism based solely on

shadows which supported multiple users and in retrospect wished they had

used a log-based recovery system with no shadow paging. He went on to

say that the shadow page table was redundant and became extremely

expensive for large files.

C. SUMMARY AND CONCLUSIONS

In summary, the three general algorithms for implementing roll-back and

recovery were incremental logging, differential files, and shadow paging.

With incremental logging the updating of the database is done immediately

with a log used to recover the system in case of roll-back. With differential

25

files, the database is not updated until the transaction has completely

finished and a log of the update has been entered into the file. And finally

with shadow paging, there are two copies of the page table. The page table

that keeps track of the current updates is called the current page table. The

page table that maintains the old version of the page table is called the

shadow page table. After a transaction has been completed, the current page

table becomes the shadow page table.

A review of the three general algorithms has given a good basis for

deciding on the general algorithm to use in implementing the roll-back and

recovery mechanism for the MBDS system. As discussed in the last section,

the algorithm for shadow paging has been discarded for the primary reason

that it is very difficult to implement in a concurrent transaction environment.

The overhead required to implement shadow paging in a concurrent

operating environment as MBDS would not be cost effective. With that

decision made, we now turn our attention to the first two algorithms;

incremental logging and differential files.

Before completely turning our attention to the two methods, we must

first review our primary objectives in implementing a roll-back and

recovery mechanism. As stated in Chapter 1, Section A.1, a very powerful

extension of roll-back and recovery would be the ability to insert a

transaction, allow the supervisor to see the results of that transaction, and

then if he/she liked the results, have the transaction committed to the

26

database. If the results were unsatisfactory to the supervisor, then the

supervisor could invoke what we call a supervisor roll-back. The ability of

the supervisor to roll-back would require that a recovery system be prepared

to roll-back numerous times. Therefore we need a recovery mechanism

that maximizes roll-back and recovery speed and at the same time performs

in a manner that does not degrade normal system performance.

In the first general algorithm, incremental logging, we found that the

advantages of incremental logging are two-fold. First, a system that runs

with this method has the fastest processing time of database operations.

Because the database is instantaneously updated with the logging operations,

there is virtually no performance degradation of the system. And Secondly,

the algorithm is straightforward and therefore easy to implement. However,

although incremental logging has the fastest processing time of the three

algorithms, it has one major disadvantage, it is the slowest of the three in

roll-back and recovery. Cardenas [Ref. 5] and Agrawal [Ref. 9] agree that

in cases where there may be many roll-backs or other circumstances that

incremental logging would not be the best selection. They go on to state that

the recovery actions of rollback and restart are performed faster with

differential files or shadow paging (with a log). For a statistical analysis and

comparison of all three cases refer to Cardenas [Ref. 5] and Agrawal [Ref.

9].

27

On the basis of the empirical evidence listed above and the requirements

of the system design, we have selected a modified version of the differential

file approach as our roll-back and recovery mechanism for MBDS.

28

III. IMPLEMENTATION ISSUES

A. IMPLEMENTATION CONSIDERATIONS

1. Problem Specification

In developing an algorithm to roll-back and recover MBDS, there are

primarily four concerns that must be addressed. First, we want the user to be

able to put in a test transaction and to see the results of those changes.

Since the user could do this many times, we would like to roll-back

efficiently by permanently changing the database only when the user wants

to commit the transaction. Secondly, we want to develop in the algorithm

the ability to commit or uncommit the transaction based on the user's

desires. Thirdly, we must develop a data structure that retains the current

state of the database but is also able to integrate the new test data into

queries without changing the database. And fourthly, we have to slightly

modify the concurrency control mechanism to maintain a consistent view of

the database.

2. Modifications to the Differential Log

In a traditional differential file algorithm, the system logs every

transaction and then later enters the transaction into the database. Before the

transaction is entered into the database, the system treats the log as part of

the database. In concurrent operations, other simultaneous transactions must

be able to reference both the differential file and the physical database.

29

In the M[BDS algorithm, the differential log (Backend Transaction

Log (BTL)) only logs those transactions which start with BEGIN and end

with END. The system responds to any RETRIEVE requests in the

transaction by first querying the database for the information and then goes

to the BTL to make any changes to the RETRIEVE request. The transaction

is not sent from the BTL to the database until the system receives a

COMMIT from the user. If the system receives an UNCOMMIT, then the

transaction is flushed from the BTL and no change to the database is needed.

The reasons for this type of log are straightforward. First, once a test

transaction enters the system, the user only receives the information from the

system by placing RETRIEVE's in the transaction since all modifications

(UPDATE, INSERT, DELETE) to the database are transparent to the user.

Once all the information from the RETRIEVE's has been gathered into a

buffer location from the database, all the modifications can be done in the

buffer location based on the transaction in the BTL. Therefore all

modifications are done in the buffer location and not to the database.

Secondly, the concurrency control mechanism does not have to change

except in the case of a TEST. In the case of a TEST, there will be the need

for additional read LOCKs into the BTL. The reason for the additional locks

would prevent a concurrent process from writing over or deleting a TEST

transaction inadvertently. Thirdly, minimal changes are required to the

30

system to implement the algorithm. And finally, the system incurs very little

additional overhead with the system upgrade.

3. The Placement and Description of the Log

The two sections that follow describe the two possible locations that

the BTL could be placed. In the centralized version, the BTL is placed at the

controller level and centrally manages the test transactions. In the

decentralized version, a copy of the BTL is placed in each one of the

backends.

In either case, the BTL would abstractly look like the table in Figure

7. Each transaction would be assigned a transaction number. Since each

transaction is made up of a number of requests, a request number is assigned

to each atomic ABDL command. The ABDL command is then put into the

table. The next field is used to state whether the request is a test or not.

Although this field does not seem necessary since the request would not be

in the table if it were not a test, it is a very important part of the data

structure because it tells the system that this is a test request. There will

more on this in Chapter IV. And finally, the last two fields give the status of

the request (i.e., committed or uncommitted), and the user number.

B. THE CENTRALIZED APPROACH

In this section, we present the centralized placement of the BTL in the

system controller. The first section describes the user interface to the

system. The second section describes the system algorithm to implement the

31

#RA RE ABDL COMMAND TEST 0MM USER

R1 INET(Fl I 51aIcaualo,80*.~tSy), YES

T R 2 RETRIEVE (CITY/ BOSTON) (CITY), YES

R3 UPDATE(FiI.=Census and City=Cumberland)(.) YES

RI

T R2
1 -

R3

N R2

Figure 7. Backend Transaction Log

32

centralized approach. And then the last two sections describe the advantages

and disadvantages of this algorithm.

1. The User Interface

The user interface is depicted in Figure 8. In Figure 8 the user would

run his MBDS software and see a set of choices:

1. COMMIT

2. TEST

3. QUIT

4. DATA DICTIONARY

The COMMIT selection would tell the system that roll-back will not be

required and to function in a normal manner (make changes to the database

as necessary). The QUIT selection will exit the user to the operating system.

The DATA DICTIONARY selection would give the user index information

into his database. If the user selects TEST, he will be prompted to enter

BEGIN and then insert the transaction. At the end of the transaction, the

system again prompts the user to insert the END into the transaction. The

system then inserts the transaction into the BTL. After the transaction has

been inserted into the BTL, the system searches for any RETRIEVE requests

in the transaction and sends those requests to the backends. The backends

receive the requests and check to see if the requests are for a TEST, if a

request is for a TEST, the backend gathers the information from the database

and then requests a read LOCK on the BTL. Once the backend gets access

33

DATA -TYE 'BEGIN'

SEND TRANS TO BACKEND

OPTRANSION

I BUSSFROMHBTLL

BUS FRM BTLPROCESS
RETRIEVES

t~L~cOMMiT

DELETE TRANS COMMIT "OMMIT OR

LI UNCOMIT

Figure 8. Centralized BTL User Interface

34

to the BTL, it modifies the information gathered from the database and sends

the results to the controller. The user is then given the information

requested. The user can then COMMIT or UNCOMMIT the transaction. If

the user commits, the transaction (minus the RETREVE's) is to be

processed by the system in the normal manner. If the user uncommits, the

transaction is simply flushed from the BTL. In either case, the user is

returned to the initial user interface for further processing. In the following

section, the general algorithm is discussed in greater detail.

2. The General Algorithm

Figure 9 depicts the relationship between the hardware and software

in MBDS. The top block is the controller to MBDS. The bottom block is

one backend to the MBDS system, understanding that there could be many

backends to the controller. Additionally, we have placed the BTL in the

controller in this centralized model.

Initially the transaction is received by the controller from the user

(Figure 9,(1)). The Request Preparation Section of the controller formats

the user requests into a table. The user then is given a choice to either

COMMIT, TEST, DATA DICTIONARY, or QUIT. If the user selects

COMMIT, then the transaction is sent directly to the Directory Management

Section of the backends (Figure 9,(2)).

If the user selects TEST, then all the operations are to be logged into

the BTL. The BTL manager will send out the RETRIEVE's in sequential

35

CONTROLLER IUSER INTERFACE

CLUTR STERI IN ERT IF R EOTION

POSGENERATOR COMOSEERATORIO

PROES INGDDSRITRI

GET ~ ~ ~ ~ TS PCCELCORGNEAORPTPC

AEN BACKEN(T

PU P I C L IRTE R O IN S C L U S T E R GET PCL
GNEAGEMEN ERCH

ACEDDRS DESCRIPTOI

MGEETN SEARCH

RECORD Ii ' " 'PROCESSING0~~ PHYSICAL IREOUESTI NEWI
DATA LJ COMPLETE TRANS

AGGREGATE OPERATIO

OPERATION CONCURRENCY
IiD CONTROL

Figure 9. Centralized Backend Transaction Log (BTL)
36

order (Figure 9,(3)). The test RETRIEVE's will be specially designated in

their fields as TEST queries. The backends will be required to not only

check their databases for the information but to look into the BTL for any

updates/insertions/deletions to the transaction requests. Each backend will

require a read LOCK in order to access the BTL. These LOCKs will be

managed by the BTL manager and requested by the Record Processing

Section of the backends (Figure 9,(4)). The BTL LOCKs' will be managed

by the BTL manager and the LOCKs to the database are managed by the

Concurrency Control Section (Figure 9,(5)) of the backends. For more

information on the MBDS concurrency control mechanism refer to [REFS.

14,15]. The read LOCKs in the BTL will only be given to those requests

whose transaction and request number are equal to the those in the BTL.

The updated user request of the test RETRIEVE will be sent directly to Post

Processing (Figure 9,(6)) for dissemination to the user.

The user is then given the choice to COMMIT or UNCOMMIT the

test. If the user commits the transaction, then all requests of the transaction

(except the RETRIEVE's) are sent to the backends from the BTL for

processing. The entries in the BTL of the transaction are deleted from the

BTL. If the user uncommits, then all requests for a given transaction in the

BTL are deleted.

37

If the user selects DATA DICTIONARY, the user

is given information about his indices into the database. And finally, if the

user chooses QUIT, he will be exited from DBMS to the operating system.

3. Advantages

There are primarily three advantages to using the centralized BTL.

The first reason is that a copy of the BTL is located centrally so there is very

little overhead to the total system. The second reason is that assuming that

the majority of the transactions will commit directly, there is no change to

the current system. And finally, the locking mechanism will only have to

change for "tests" which will occur only a small percentage of the time in

relation to the total users on the system.

4. Disadvantages

The one major disadvantage of this system is that this would

significantly increase the traffic over the network. The additional traffic

over the network would cause processing delays and degradation of system

performance. In addition, the major design goal of maximizing the work of

the backends would be violated by requiring the controller the additional

performance overhead of maintaining the BTL.

C. THE DECENTRALIZED APPROACH

In this section, we present the decentralized placement of the BTL in

each one of the backends. The first section describes the user interface to

the system. The second section describes the system algorithm to implement

38

the decentralized approach. And then the last two sections describe the

advantages and disadvantages of this algorithm.

1. The User Interface

The user interface to the decentralized BTL is very similar to the

centralized BTL. The decentralized BTL user interface is depicted in Figure

10. In Figure 10, the user would run his MBDS software and see the

following set of choices:

1. COMMIT

2. TEST

3. QUIT

4. DATA DICTIONARY

As in the centralized approach, the COMMIT selection would tell the system

that roll-back will not be required and to function in a normal manner (make

changes to the database as necessary). The QUIT selection will exit the user

to the operating system. The DATA DICTIONARY selection would give

the user index information into his database. If the user selects TEST, he

will be prompted to enter BEGIN and then insert the transaction. At the end

of the transaction, the system again prompts the user to insert the END into

the transaction. The system then inserts the transaction into the BTL. The

primary difference here between the centralized approach and the

decentralized approach is that instead of making 1 copy of the transaction

and storing it in the controller, the decentralized model broadcasts the

39


~~~ SEND TRNSTITCKN

CCOMMIT

Figue 1. DeentAlie TL UsYE nef

40TONR



transaction to all the backends to be entered into the BTL. When the

transaction is received, the backend checks to see if it is a TEST, if it is a

TEST, the backend inserts the transaction into the BTL. After the transaction

has been inserted into the BTL, the local BTL searches for any RETRIEVE

requests in the transaction and immediately accesses the database to gather

information. The backend then requests a local read LOCK on the BTL and

modifies the requested information based on the information in the BTL.

This information is passed on to the controller who compiles the information

from all the backends and sends the requested information to the user. The

user can then COMMIT or UNCOMMIT the transaction. If the user

commits, the transaction (minus the RETRIEVE's) is sent to be merged into

the database in the normal manner. If the user uncommits, the transaction is

simply flushed from the BTL. In either case, the user is returned to the

initial user interface. In the next section, the general algorithm is discuso-d

in greater detail.

2. The General Algorithm

Figure 11 depicts the relationship between the hardware and software

in MBDS. As describe earlier, the top block is the con:roller to MBDS. The

bottom block is one backend to the MBDS system, understanding that there

could be many backends to the controller. The significant change here is

that now the BTL is located in each backend.

41



CONTROLLER USER INTERFACE

rEL 1GGREGATE' REQU EST
MOIOOT REQUEST EPRTO

POST PERATION COMPOSEF

CLUSTR ID INSERT INFORIVITION
GENERATOR GENERATOR

FACKED DESCRIPTOR ID
SELECTOR GENERATOR

GET PCL PUT PCL

REQES NEW

AG R G T DI E ATO CCOMPLET

COMMITRESEN
__________ ADDRESS____ DEONTIPOO

Figure ~~~PI 11EeetaSe akedTascinLg(TL
GENRAIO SARH 42VE



Initially, the transaction is received by the controller from the user

(Figure 11,(1)). The Request Preparation Section of the controller formats

the user requests into a table. The user then is given a choice to either to

COMMIT, TEST, DATA DICTIONARY, or QUIT. If the user executes a

COMMIT or a TEST, the transaction is sent directly to the backend. If the

user selects COMMIT, then the transaction is sent directly to the Directory

Management section of the backends (Figure 11,(2)).

If the user selects TEST, then the backend immediately logs the

transaction into the BTL (Figure 11,(3)). The local BTL manager will send

out the RETRIEVE's in sequential order (Figure 11,(4)). The test

RETRIEVE's will be specially designated in their record fields as TEST

queries. The backends will be required to not only check their databases for

the information but to look into their local BTL for any

update s/insertions/deletions to the transaction requests. The backend

information, or a negative response (in the case that the backend has no

information in the database relating to the query), is then sent directly to

Post Processing (Figure 11,(5)) for compilation by the controller and

disseminated to the user.

Each backend will require a read LOCK in order to access the BTL

and additional read LOCKs to access the database. The BTL LOCKs will be

managed by the local BTL manager and the LOCKs to the database are

managed by the Concurrency Control Section (Figure 11,(6)). The LOCKs

43



to the database are requested by the Directory Management Section of the

backends (Figure 11,(7)) and the LOCKs to the BTL are requested by the

Record Processing Section (Figure 11,(8)). The read LOCKs in the BTL

will only be given to those requests whose transaction and request number

are equal to the those in the BTL. Once a transaction has been processed by

an operation, the LOCKs are then given back to the BTL manager and

Concurrency Control Section.

The user is then given the choice to COMMIT or UNCOMMIT the

TEST. If the user commits the transaction, then all requests of the

transaction (except the RETRIEVE' s) are sent to the Directory Management

Section (Figure 11,(9)) for processing. The entries in the BTL of the

transaction are deleted from the BTL. If the user uncommits, then all

requests for a given transaction in the BTL are deleted.

If the user chooses DATA DICTIONARY, the user is given

information about his indices into the database. And finally, if the user

chooses QUIT, he will be exited from DBMS to the operating system.

3. Advantages

This version of the BTL has some significant advantages. First, since

each backend has its own copy of the transaction log, it is much quicker to

get into the BTL (no requirement to network to the controller in order to

request locks as in the centralized BTL version). This greatly reduces the

traffic on the network increasing system performance. Third, assuming that

44



the majority of the transactions will commit directly, there is no change to

the current system. Fourth, the locking mechanism will only have to change

for tests which will occur only a small percentage of the time. And finally,

one of the major design goals for MBDS was to minimize the work done by

the controller and maximize the work done by the backends [Ref. 15, p. 1].

The use of the decentralized BTL maintains the spirit of the MBDS major

design goal.

4. Disadvantages

The primary disadvantage of this model is that every backend will

have a copy of the BTL. This redundancy will create extra storage

overhead for each backend. If the data structure for the BTL is dynamic,

the overall cost to the system would be negligible.

D. SUMMARY AND CONCLUSIONS

In this chapter, we discussed the four major implementation issues

that concerned the inclusion of roll-back and recovery in MBDS. The four

issues were:

1) Give the user the ability to put in a test transaction and to see
the results of those changes.

2) Develop in the algorithm the ability to COMMIT or
UNCOMMIT the transaction based on the user's desires.

3) Develop a data structure that retains the current state of the
database but is also able to integrate the new test data into queries
without changing the database.

4) Modify the concurrency control mechanism.

45



Additionally, the traditional differential file model had to be modified

to fit the four issues listed above and MBDS. In the M[BDS algorithm, the

differential log (Backend Transaction Log (BTL)) only logs TEST

transactions. The system responds to any RETRIEVE requests in the

transaction by first querying the database for the information and then goes

to the BTL to make any changes to the results of the RETRIEVE request.

The transaction is not sent from the BTL to the database until the system

receives a COMMIT from the user. If the system receives an UNCOMMIT,

then the transaction is flushed from the BTL and no change to the database

is needed.

There are two places to put the BTL. The first option, the centralized

BTL, called for putting the BTL in the controller. The centralized BTL had

primarily three advantages; little system storage overhead, small change to

the current system, and the concurrency control mechanism would only have

to change for tests. But, the Centralized BTL had two major

disadvantages. First, this method would significantly increase the traffic

over the network due to the need to receive read LOCKs from the BTL.

Second, the major design goal of maximizing the work of the backends

would be violated by requiring the controller the additional performance

overhead of maintaining the BTL.

The second option, the decentralized BTL, called for putting the BTL

in each one of the backends. This version of the BTL has some significant

46



advantages; quicker access to the BTL, less network congestion than in the

centralized BTL, little change to the current system, locking mechanism will

only have to change for tests, and finally, maximizes the work done by the

backends. The primary disadvantage of the decentralized approach is the

replication of the BTL in each one of the backends. This can be overlooked

to some extent if the data structure used for the BTL is dynamic. Once the

transaction is committed or uncommitted, it is flushed from the BTL and the

system recovers the storage overhead.

On the account of the significant advantages of the decentralized BTL

over the centralized BTL, MBDS will use the decentralized BTL log as its

recovery storage structure.

47



IV. THE TRANSACTION LOG

In this chapter, the data structure and algorithm is defined that will be

used to implement roll-back and recovery in MBDS. In the first section, the

data structure is proposed for the BTL. In the second section, the "big

picture" of the algorithm is described from a decomposition point of view.

After looking at the "big picture," the third section describes the algorithm in

detail. And finally, in the last section I summarize the Chapter.

1. THE DATA STRUCTURE

An abstract view of the data structure that will contain the BTL is

depicted in Figure 12. As shown in the figure, the BTL is basically an array

of pointers that point to a linked list of records. For each index into the

array, there is a unique and distinct transaction number associated with it.

As discussed in Chapter I, every transaction is composed of a number of

requests. Each request is put into a record and then inserted into the linked

list of records. For the remainder of this discussion, requests and records are

synonymous. When the logging of the transaction is finished, the user has a

pointer from a array pointing to a linked list of records/requests.

When the transaction is sent to the backends, the BTL manager looks into

the array of pointers, POINTERARRAY, and searches the array for the first

NIL value. The index into POINTERARRAY is the transaction number and

is placed into the first field of the record, TRANSNUM. The s .cond field is

48



POINTERARRAY
BTLSIZE

SUM WT N[SE ____ _____

TNSUMIFECMABDLCMD COMMIT I T S FJ WP
2 UPDATE F T 1A I1

BDOMDCOMMIT ITEST 1USERtMI MRAM
3 E TE IF T

TRANSUM FECNUM ABLCMD COMM IT ITEST (USERN'UM FDT
2J1NETRTE IF I T I 2A I

[rRAN5UMjEM - DLCMD I COMMIT -ITEST USEUM FDT
_______ MN S ~ R TE F T 2A_____ FWPR

Figure 12. Backend Transaction Log Data Structure

49



the request number, REQNUM, which is the sequential order of the requests

as they enter the BTL. The third field is the ABDL command, ABDLCMD,

along with the arguments that follow the command. The fourth field is a

boolean field, COMMIT, that sets the request to TRUE if the request is to be

committed and to FALSE if the request is in an uncommitted state. When

the transaction is first entered into the log, this field is set to FALSE. The

fifth field is another boolean field, TEST, that tells the system that this is a

TEST request. The sixth field, USERNUM, is the user's system

identification. And finally, the last field, FWDPTR, is the pointer to the next

request in the transaction's linked list or to NIL if it is the last request in the

transaction.

Since this data structure is dynamic, there is very little overhead incurred

on the backend. The only additional overhead to the backends in non-testing

operations is the array of pointers which requires negligible storage space.

During testing operations, the size of the BTL will be directly dependent on

the number of users that are sending in test transactions.

2. A DECOMPOSITION VIEW OF THE AT .GORITHM

In Figure 13, the decomposition view of the algorithm is depicted This

algorithm is composed of 14 steps/procedures which are executed

sequentially for each transaction once the system roll-back is invoked.

When the user enters the system, he is presented with four choices D for

data dictionarn information, T for test (roll-back), C for commit the

50



SE

D, Cl UIT

T

CREATE PTR ARR

POSTPCOMMIT

-ACOTAR - ITIALIZE ERHBL)

INSRTTRAS IRCTORY MANAGEMI N.

DELETE FROM BTL ADD -TO -DATABAS

Figure 13. A Decomposition Diagram

51



transaction, or Q for quit and return to the operating system. In cases D, C,

and Q, the system performs its operations in the usual manner [Refs. 14,15].

In the case where the user selects T, the roll-back and recovery mechanism is

started.

Once the first user selects the test mode, the first step calls for an array of

pointers to be created in each one of the backends

(CREATEPTRARRAY). This is the initial creation of the BTL. In the

next step, TEST calls SEARCHFORPTRARRAY in order to find the first

pointer in the array that has a NIL pointer. This is the place where the

transaction is to be inserted. In the third and fourth steps, TEST calls

INITIALIZE which calls INSERTTRANS in order to create the record

structure which inserts the request into the record, attaches the record to the

pointer of the array, and then looks for the next request to insert into the data

structure or BTL. This loop goes on until the entire transaction is entered

into the BTL.

In the next step, the algorithm searches, SEARCHBTL, the BTL for any

retrieves and sends those retrieves to DIRECTORYMANAGEMENT.

DIRECTORYMANAGEMENT searches the database for the information

and sends the information to UPDATERETRIEVE if the request was a test.

UPDATERETRIEVE searches the BTL a second time to modify the

information and then passes the information onto POSTPROCESSING for

dissemination to the user. If the user elects to COMMIT the changes then

52



POSTPROCESSING sends a COMMIT message to

ADDTODATABASE. ADDTODATABASE simply searches through

the BTL for updates, inserts, or deletes and changes the TEST field from

TRUE to FALSE and passes them to DIRECTORYMANAGEMENT to be

added to the database. If the user selects to UNCOMMIT or after a

transaction has been added to the database, the transaction is deleted from

the database by DELETEFROMBTL. In the following section, the

algorithm goes into greater detail.

3. THE ALGORITHM

In the Appendix, this algorithm is written in pseudo PASCAL for further

reference. As discussed in section 1, the data structure of the BTL is an

array of pointers where each pointer points to a linked list of records. The

index into the array is the transaction and the linked list of records are the

requests that compose the transaction.

In section 2, I described the initial user interface to the algorithm with the

selection to COMMIT, TEST, DATADICTIONARY, or QUIT. The

present MBDS system remains the same for every user entry except for

TEST. When the TEST option has been selected, the algorithm searches the

array of pointers for a NIL pointer. SEARCHFORPTRARRAY is the

pseudo code algorithm for searching the array for the NIL pointer (see

Appendix). Figure 14 displays an abstract view of the BTL during

SEARCHFORPTRARRAY. In this example, the system currently has

53



2 3

~INSERT

k . -RETRIEV E
"UPDATE

Figure 14. SEARCHFORPTRARRAY

54



two test transactions active at indices 1 and 2. This procedure simply goes

down the array until it finds that index 3 has a NIL pointer. This is where

the next transaction will go. As indices 1 and 2 are completed, the

transactions will be flushed from the BTL and their pointer's will return to

NIL.

Having found a location in the BTL to insert the transaction,

SEARCHFORPTRARRAY sends the index of the array back to TEST.

TEST sends the index of the array to INITIALIZE. INITIALIZE creates a

record structure of the first request and then sends the request to

INSERTTRANS where the request is attached to the pointer array. This

loop is continued until all of the transaction has been inserted into the BTL.

Figure 15 displays the loop as the transaction is inserted into the BTL. In

the case of index 3, the first request inserted is an UPDATE. After the

UPDATE, the algorithm gets the next request (RETRIEVE) and inserts it

into the linked list. The initialization phase is completed after the last two

UPDATES are inserted.

Figure 16 depicts the next stage of the algorithm. In Figure 16, the top of

the figure abstractly portrays the software in the backend. At the bottom of

the figure is the BTL data structure as it changes during the procedure

SEARCHBTL. In order for the system to respond to TEST information

from the user, it must be given the RETRIEVEs from the BTL. In this phase

of the algorithm, a temporary pointer goes through the transaction, in this

55



INIILIZE
RECORD

3 TRANSNUM

I REQNUM

UPDATE ABDLCMD

FALSE OMMIT

TRUE TEST

1 A USERNUM

-... WDPTR

THE BACK-END TRANSACTION LOG (BTL)

INSERT TRANS

2 3n

U PDATE

FIguRT5 h T Iiilzt
INSE5T



PUT PCL DIRECTORY CLUSTER GET PCLMRNRGEMENT SEARCH CMI S
_________7 COMTCS

ADDRESS 1DESCRIPTOR
GENRAIONkL (T) I LOG

PROCESSNG DATAREQUEST ElNEW F C
AGGREGATE OPERATION COMPLETE TrF

OPEATONCONCURRENCYUI
________________________CONTROL

SEARCH _BTL__

1 2 3 n

UPDATE

Figure 16. Sending RETRIEVES to Directory Management

57



case transaction 3, and finds the retrieve request and sends it over to

Directory-Management. The temporary pointer continues through the

transaction until all retrieves have been sent to Directory-Management.

DIRECTORYMANAGEMENT first checks to see if the RETRIEVE is

a TEST RETRIEVE. If the RETRIEVE is not a TEST then

DIRECTORYMANAGEMENT processes the transaction in the normal

manner [Ref. 14,15]. But if the RETRIEVE is a TEST then

DIRECTORYMANAGEMENT takes the following actions. First,

DIRECTORYMANAGEMENT sends a request for type-C (dynamic)

attributes needed by the RETRIEVE command to the Concurrency Control

Section (CC). Once the attributes are locked, CC signals

DIRECTORYMANAGEMENT. DIRECTORYMANAGEMENT next

performs a descriptor search and signals CC to release the locks on the

attributes. Following the descriptor search, DIRECTORYMANAGEMENT

sends the descriptor-ID groups to CC. When the descriptor-ID groups are

locked and the cluster search is allowed, CC signals

DIRECTORYMANAGEMENT. DIRECTORYMANAGEMENT then

performs a cluster search and signals CC to release the locks on the

descriptor-ID groups. Following the cluster search, DIRECTORY_

MANAGEMENT sends the cluster-IDs for retrieval to CC. Once the

cluster-IDs are locked and the request can proceed with address generation

and the rest of the request execution, then CC signals

58



DIRECTORYMANAGEMENT. DIRECTORYMANAGEMENT then

performs the address generation and sends the RETRIEVEREQUEST and

the addresses to the Record Processing Section (RP). Once the

RETRIEVE-REQUEST has been generated, the Record Processing Section

(RP) first checks to ensure that the request is a TEST, if the request is a

TEST then RP requests a read LOCK on the BTL. When the LOCK is

granted, Directory-Management calls updateretrieve.

As depicted in the bottom of Figure 17, UPDATERETRIEVE creates a

second temporary pointer and looks through the transaction in the BTL for

any inserts, updates, or deletes. When inserts, updates, or deletes are found,

the retrieverequest is modified. The modified retrieve-request is then sent

to PostProcessing Section of the controller where the transaction is

aggregated from all the backends and displayed to the user.

The user is then given the option to COMMIT or UNCOMMIT the

transaction. If the aser selects COMMIT then ADDTODATABASE is

called. ADDTODATABASE creates a third pointer into the transaction,

Figure 18, that sends updates, inserts, and deletes to Directory-Management.

Before the requests are sent to DIRECTORYMANAGEMENT, the TEST

field in the record is changed to false so that

DIRECTORYMANAGEMENT treats the request as a normal request and

enters the request into database. Once this function is performed, then RP

informs CC that the request is done and the locks on the cluster ids can be

59



PUT PCL DIRECTORY CLUSTERGE C

de 00,MANAGEMENT SEARCH

ADDRESS DESCRIPTOR RE A

GENERATION SEARCH TRAMSACT0

RORDSIN PHYSICAL REUSrE

AGGREGATE OPERATIOh CO E UTRFI
OPERTIONCONCURRENCY

___________________CONTROL

UPDATE RETRIEVE

1 12 13 n

UPDATE

Figure 17. Update the RETRIEVEREQUEST
60)



BACKEND

PUT PCL DIRECTORY CLUSTER [GTC

MRNRGEMENT SEARCH

GENERATION SEARCH TRANSACTI

RECORD
PROCESSING PHYSICAL I

AAREQUEST NEW
I I TRAFFIC

AGGREGATE I PERATION COPEE UNIT
OPERATION CONCURRENCY

____ ____ ___ ____ ___ ____ I2NTRIL

ADD TO DATABAS.E

11 12 13 1n

RETR3

UPDATEE

Figure 18. Transaction Inserted into the Database

61



released. Additionally, the BTL manager releases locks on the BTL

request, the transaction is flushed from the BTL, and then the transaction

pointer returns to NIL.

If the user selects to UNCOMMIT the transaction, RP again notifies CC

to release all locks on the transaction. Additionally, the transaction in the

BTL is flushed from the BTL and the transaction pointer returns to NIL.

4. SUMMARY

In this Chapter, I discussed the data structure of the BTL. The data

structure of the BTL is an array of pointers where each pointer points to a

transaction. The transaction is stored as a linked list of records where each

record is a request. Following a discussion of the data structure, we looked

at the algorithm from a decomposition point of view. This gave us a "big

picture" view of how the algorithm would work. And then finally, we went

into the algorithm itself.

The BTL algorithm has many advantages. First, the UNCOMMIT is

simple to execute because all that needs to be done is to flush the transaction

from the BTL. Second, the COMMIT is done rapidly since all that is

required is to send the transaction from the BTL to

DIRECTORYMANAGEMENT as if the transaction had originated from

the controller in the first place. Third, since no modification is made to the

database until the user commits, roll-back is done quickly and efficiently.

Fourth. since each user has its own test segregated in the BTL and there is

62



no change to the database, each user is partitioned to the effects of his test

only. Fifth, the BTL has a dynamic data structure so there is negligible

overhead when no one is in the TEST mode and expands as users enter the

TEST mode. And finally, there is no change to the current system software

except when the user selects the TEST option. The disadvantages are the

extra overhead required when a TEST option has been selected and the

intuitive observation that a test RETRIEVE will take longer to execute than

a non-test RETRIEVE.

63



V. CONCLUSIONS

In Chapter I, I stated that we wanted to design a roll-back and recovery

algorithm that took into account nine key factors. The first key factor

required that we should develop an algorithm that incurred modest storage

overhead for the duplicated data that is brought into main memory. In this

algorithm, we accomplished this task by requiring our data structure to only

hold data that has not been processed into the database and is therefore not

replicated data. So in actuality we have exceeded the goal of modest storage

overhead.

The second key factor required that the data structure which stores the

data holds only the data it needs and dynamically grow and shrink to fit the

system needs. This is exactly how the data structure for the BTL is designed

and implemented in the algorithm.

The third key factor required that the roll-back and recovery mechanism

is designed with the consideration of storage overhead versus the number

of rollbacks required. A system that seldom has a need to roll-back should

have a different algorithm then a system that frequently rolls-back. Our

system had a un'lue problem. In the direct COMMIT mode, the system

would not roll-back and therefore not require any storage overhead. But in

0t TEST mode, the system may expect to roll-back many times. This has

mandated the requirement not to change the database until the user

64



committed the transaction. In order to solve this problem in the most

efficient manner, we designed a dynamic data structure for the BTL so that

in cases when there were no TEST operations ongoing, there was little

storage overhead to the system. On the other hand, we created a differential

log when in the TEST mode so that we could quickly and efficiently roll-

back numerous times.

The fourth key factor required that our design permits parallelism to the

maximum extent possible to satisfy system performance requirements. A

system could always guarantee a consistent view of the database and fast

recovery if it serially executed each transaction. But the costs of serial

execution negate any performance benefit of a concurrent system.

Aditionally, the level of granularity must be to the level that offers

maximum concurrency. In order to maintain the concurrency and

parallelism of the system, the concurrency control only had to be slightly

modified in the TEST mode. The only difference in the TEST mode is that

the Record Processing Section (RP) must hold onto its cluster id locks a

little longer until it can get an additional lock on the BTL and modify the

RETRIEVE REQUEST.

The fifth key factor required that the algorithm performs satisfactorily in

a network environment. Incorporating the TEST mode into the system

would naturally increase the load to the network because of the increased

interaction between the user and the database. However, implementing a

65



table approach as opposed to modifying the database would appear the least

costly of the two alternatives;

The sixth key factor required that the overhead during normal

performance should not be increased by the roll-back and recovery

mechanism. Since normal performance does not require interface with the

BTL, there is no degradation of system performance caused by the roll-back

and recovery mechanism.

The seventh key factor required that the recovery speed during roll-back

should not cause major delays to the users. Since roll-back ordy requires

flushing the transaction from the BTL and does not require any modification

to the database, the roll-back will not create any major delays to the users.

The eighth key factor required that the software complexity of the

recovery mechanism needs to be as simple as possible to prevent system

delays. Implementing the BTL as an array of pointers pointing to a linked

list of records intuitively fits the structure of multiple transactions. The

complexity for flushing the BTL requires only the setting of the pointer to

the transaction to NIL.

And finally, the recovery system must be reliable. Having not modified

the database before a roll-back is initiated allows for a very reliable roll-back

66



mechanism. Since the state of the database is only updated during

COMMIT operations, the database is never in an inconsistent state.

The BTL algorithm meets or exceeds all of the critical factors required of

a roll-back and recovery mechanism. It will give MBDS yet another

necessary capability.

67



APPENDIX

THE BACK-END TRANSACTION LOG(BTL) ALGORITHM

program ROLL-BACK(ouput,input);

(* This is an algorithm for implementing a roll-back
(* operation that will allow TEST queries with data to be
(* entered into the database. Users then will have
(* the ability to commit the changes or uncommit them.

(* DATA STRUCTURE and DECLARATIONS *)

const
STRINGSIZE = 45;
BTLSIZE = 25;

type
LINKPOINTER = ABTL;
INDEX = 1..BTLSIZE;
POINTERARRAY = array [INDEX] of LINKPOINTER;
STRING = packed array [1..STRINGSIZE] of CHAR;
BTL = record

TRANSUM : integer;
REQNUM : integer;
ABDLCMD: string;
COMMIT : boolean;
TEST : boolean;
USERNUM: integer;
FWDPTR : linkpointer;

end; (* BTL *)

var
USERREPLY char;
TRANSACTIONNUM: integer;
USERNUMBER :integer;
PTRARRAY : pointerarray;

68



(********************** DELETEFROMBTL ***************)

procedure DELETEFROM_BTL (PTRARRAY(.NUM.): linkpointer);

(* This procedure deletes the transaction from the BTL
(* and returns the pointer to the system.

begin
PTRARRAY(.NUM.):- nil;

end; (* DELETEFROM_BTL *)

69



(*********************** ADD_TODATABASE **************)

procedure ADDTODATABASE (PTRARRAY(.NUM.): linkpointer);

(* This procedure accesses the transaction in the BTL
(* and sends all UPDATEs, INSERTs OR DELETEs to
(* DIRECTORYMANAGEMENT for input into the database.
(* The "TEST" field is changed to false to tell
(* DIRECTORYMANAGEMENT that this request is not a test

var
TEMPPTR3: linkpointer;

begin
new (TEMPPTR3);
TEMPPTR3:= PTRARRAY(.NUM.);
while TEMPPTR3.FWDPTR <> nil do begin

read (TEMPPTR3.ABDLCMD);
if TEMPPTR3.ABDLCMD = "UPDATE, INSERT OR

DELETE" then begin
TEMPPTR3.TEST := false;
DIRECTORYMANAGEMENT(PTRARRAY(.NUM.),

TEMPPTR3);
end (* if *)
TEMPPTR3 = TEMPPTR3.FWDPTR;

end; (* while *)
read (TEMPPTR3.ABDLCMD);
if TEMPPTR3.ABDLCMD = "UPDATE, INSERT OR DELETE"

then begin
TEMPPTR3.TEST:= false;
DIRECTORYMANAGEMENT(PTRARRAY(.NUM.),TEMP

PTR3);
end (* if *)

end; (* ADDTODATABASE *)

70



(********************** CONTROLLER **********************

************************ POSTPROCESSING ****************)

procedure POSTPROCESSING (RETRIEVEREQUEST: undefined,

PTRARRAY(.NUM.): linkpointer);

(* This procedure aggregates all the RETRIEVE_.REQUEST(S)
(* from the back-ends and then asks the user if
(* he/she wants to commit the changes or uncommit them. If the user
(* wants to commit the changes then the changes are
(* added to the data base (ADDTODATABASE) and
(* then deleted from the BTL(DELETE FROM_BTL). If
(* the user wants to uncommit the changes
(* then the changes are deleted from the BTL(DELETEFROMBTL). *)

var
ANSWER: char;

begin
PP aggregates RETRIEVE_REQUEST (S) from back-ends;
displayed to user;
writeln ("COMMIT OR UNCOMMIT, C OR U?");
readIn (ANSWER);
if ANSWER = "C" then begin

ADDTODATABASE (PTRARRAY(.NUM.));
DELETEFROM_BTL (PTRARRAY(.NUM.));

end (* if *)
else

DELETEFROM_BTL (PTRARRAY(.NUM.));
end; (* POSTPROCESSING *)

'71



***************************** SEARCHBTL2 *****************)

procedure SEARCHBTL2 (var TEMPPTR : linkpo-iter,
var FOUND: boolean);

(* This procedure is called by UPDATERETRIEVE to see
(* if the request is an INSERT, UPDATE OR DELETE
(* which will be used to update the RETRIEVEREQUEST.

begin
read (TEMPTR.ABDLCMD);
if TEMPPTR.ABDLCMD = "INSERT,UPDATE OR DELETE" then

FOUND:= true;
end; (* SEARCH_BTL2 *)

72



(*********************** UPDATERETRIEVE ***************)

procedure UPDATT. RETRIEVE (PTRARRAY(.NUM.) : linkpointer,
RETRIEVEREQUEST: undefined);

(* This procedure updates the RETRIEVEREQUEST by
(* going through the transaction with another
(* pointer and checking for INSERTs,UPDATEs OR DELETEs.
(* If one is found, then the RETRIEVEREQUEST is
(* modified by record processing.

var
TEMPPTR2• linkpointer;
FOUND: boolean;

begin
new (TEMPPTR2);
TEMPPTR2:- PTRARRAY(.NUM.);
repeat

FOUND:= false;
SEARCHBTL2(TEMPPTR2,FOUND);
if FOUND then begin

RP compares TEMPPTR2.ABDLCOM to
RETRIEVE-REQUEST;

RP modifies RETRIEVE_REQUEST;
TEMPPTR2:= TEMPPTR2.FWDPTR;

end; (* if *)
until TEMPPTR2.FWDPTR = nil
FOUND:= false;
SEARCHBTL2(TEMPPTR2, FOUND);
RP compares TEMPPTR2.ABDLCOM to RETRIEVEREQUEST;
RP modifies RETRIEVEREQUEST':
POSTPROCESSING (RETRIEVEREQUEST,
PTRARRAY(.NUM.));

end; (* UPDATERETRIEVE *)

73



(,****************** DIRECTORY MANAGEMENT ***444***)

procedure DIRECTORYMANAGEMENT(PTRARRAY(.NUM.)
linkpointer,

TEMPPTR: linkpointer);

(* This procedure takes in any ABDL request and
(* processes the query. If the query is a test query
(* then it has to request an additional lock for the BTL.
(* It also calls UPDATERETRIEVE to recompute
(* the RETRIEVEREQUEST which will eventually be shown to the user.*)

var
DM (* DIRECTORY MANAGEMENT *): string;
CC (* CONCURRENCY CONTROL *) : string;
RP (* RECORD PROCESSING *) : string;
BTL (* BACK-END TRANSACTION LOG *): string;
PP (* POST PROCESSING *) string;

begin
DM sends type-C attributes needed from TEMPPTR to CC

- when attributes locked then
+ CC signals DM;

DM performs descriptor search
- signals CC to release locks on those attributes;

DM sends the descriptor-ID groups for retrieve request to CC
- when descriptor-ID groups locked and cluste. search allowed

then
+ CC signals DM;

DM performs cluster search and signals CC to release the locks on the
descriptor-ID groups;

74



DM sends the cluster-IDs for the retrieval to CC.
- once cluster-IDs are locked

+ address generation
+ if TEMPPTR.ABDLCMD = RETRIEVE OR

RETRIEVE-COMMON then
+ begin

-request processed
-RETRIEVEREQUEST formed

+ end (* if *)
- CC signals DM;

if TEMPPTR.TEST = true then begin
RP requests lock on BTL to CC
when lock is approved

UPDATERETRIEVE (PTRARRAY(.NUM.),
RETRIEVEREQUEST);

RP returns locks on cluster-ids to CC
RP returns locks on BTL

end; (* if *)
end (* DIRECTORYMANAGEMENT *)

75



(**************************** SEARCHBTL ******************)

procedure SEARCHBTL (PTRARRAY (.NUM.) : linkpointer);

(* This procedure searches the transaction for retrieves
(* and sends the retrieve to DIRECTORY MANAGEMENT for
(* processing.

var
TEMPPTR : linkpointer;

begin
TEMPPTR:= PTRARRAY(.NUM.);
while TEMPPTR.FWDPTR <> nil do begin

read (TEMPTR.ABDLCMD);
if TEMPPTR.ABDLCMD = "RETRIEVE" then

DIRECTORYMANAGEMENT(PTRARRAY(.NUM.),
TEMPPTR);

TEMPPTR = TEMPPTR.FWDPTR;
end; (* while *)
if TEMPPTR.ABDLCMD = "RETRIEVE" then

DIRECTORY_MANAGEMENT(PTRARRAY(. NUM.),
TEMPPTR);

end; (* SEARCHBTL *)

76



(********************INSERTTRANS********)

procedure INSERTTRANS (var PTRARRAY(.NUTM.) :linkpointer,
k3TL: record);

(This procedure takes the record (request) from
(INITIALIZE and joins it to the rest of the transaction
(in thfe BTL.

var
TEMPPTR :linkpointer;

begin
new(TEMPPTR);
if PTRARRAY(.NUM.) = nil then begin

PTRARRAY(.NrUM.) = BTL;
PTRARRAY(.NUM.).FWDPTR = nil;

end
else begin

TEMPPTR =PTRARRAY(.NUM.);
while'TEMPPTR.FWDPTR <> nil do

TEMPPTR = TEMPPTR.FWDPTR;
TEMPPTR.FWDPTR = BTh;
BTL.FWD = nil;

end;
end; (* INSERTTRANS *

77



(**************************** INITIALIZE ********************)
* ** ** * ** *** ** ** ** ** **** ** *** ** * ** ** ** *** * ***** * *** * *** ** ****

procedure INITIALIZE (var PTRARRAY(.NUM.): linkpointer);

(* This procedure inserts the complete transaction into
(* the data structure (BTL). It takes one request at
(* a time, puts the request into a record, and then
(* sends the record to INSERTTRANS which attaches
(* the record to the transaction in the BTL.

var
ENTERREQUEST: boolean;
ANSWER: char;
REQUESTNUM : integer;
USERNUM : integer;

begin
writeln ("ENTER YOUR USER NUMBER");
readln (USERNUM);
REQUESTNUM:= 0;
BTL.TRANSUM:= NUM;
ENTERREQUEST := true;
writeln ("TYPE 'BEGIN"');
while ENTERREQUEST = true do begin

REQUESTNUM := REQUESTNUM + 1;
writeln ("ENTER YOUR REQUEST");
readln (BTL.ABDLCMD);
BTL.REQNUM = REQUESTNUM;
BTL.PARTIALCOM = true;
BTL.COMMIT = false;
BTL.TEST = true;
BTL.USERNUM = USERNUM;
INSERTTRANS (PTRARRAY(.NUM.),BTL);
WRITELN ("FINISHED ENTERING REQUESTS? Y OR N");
READLN (ANSWER);
if ANSWER = 'N' then

ENTERREQUEST = true
else

ENTERREQUEST = false
end; (* while ENTERREQUEST *)
writeln ("TYPE 'END"');

end; (* INITIALIZE *)

78



(******************* SEARCHFORPTRARRAY ***************)

procedure SEARCHFORPTRARRAY(var PTRARRAY(.NUM.):
linkpointer);

(* This procedure searches a global array of pointers
(* for an empty pointer to insert the transaction into
(* the Back-end Transaction Log.

var MAXLENGTH, COUNT: index;
STOPLOOP : boolean;

begin
STOPLOOP := false;
for COUNT = 1 to MAXLENGTH do begin

if STOPLOOP := false then begin
if PTRARRAY(.NUM.).FWDLINK = nil then begin

STOPLOOP := true;
end; (* if *)
NUM := NUM + 1;

end; (*if*)
end; (* for *)
NUM := NUM- 1;

end; (* SEARCHFORPTRARRAY *)

79



(**************************** T E S T ************************)

procedure TEST;

(* This procedure is the "junction" of this algorithm.
(* It calls SEARCHFORPTRARRAY to find a slot in the BTL.
(* It then calls INITIALIZE to insert the
(* transaction into the BTL. And then calls SEARCHBTL
(* to run the transaction.

var
NUM : index;

begin
NUM:= 1;
SEARCHFORPTRARRAY(PTRARRAY(.NUM.));
INITIALIZE (PTRARRAY(.NUM.));
SEARCHBTL (PTRARRAY(.NUM.));

end;(* TEST *)

(********************* CREATE PTRARRAY *****************)

procedure CREATEPTRARRAY;

(* This procedure creates the array that stores the BTL.

var
I, STOP = index;

begin
for I = 1 to STOP do begin

PTRARRAY(.I.) = nil;
end; (* for *)

end; (* CREATEPTRARRAY *)

80



(******************************* M A I N *********************)

begin
writeln ("Type C for commit, T for test, D for data dictionary");
writeln ("or Type Q for quit");
CREATEPTRARRAY;
readln (USERREPLY);
while USERREPLY in [.C,c,T,t,D,d.] do begin

case USERREPLY of
C,c: COMMIT_PROCEDURE;
T,t: TEST;
D,d: DATADICTIONARYPROCEDURE;

end (* while case *)
writeln ("Type C for commit, T for test, D for data");
writeln ("dictionary");
writeln ("or Type Q for quit");
readln (USERREPLY);

end; (* while USERREPLY *)

end. (* ROLL-BACK *)

81



LIST O1F REFERENCES

1. Bayer, R., Heller, H., and Reiser, A., "Parallelism and Recovery in
Database Systems," ACM Transactions on Database Systems, v. 5, pp.
139-156, June 1980.

2. Kohler, W., "A Survey of Techniques for Synchronization and
Recovery in Decentralized Computer Systems," ACM Transactions on
Database Systems, v. 13, pp. 149-179, June 1981.

3. Gray, J., and others, "The Recovery Manager of the System R
Database Manager," ACM Transactions on Database Systems, v. 13,
pp. 223-242, June 1981.

4. Aghili, H., and Severance, D., "A Practical Guide to the Design of
Differential Files for Recovery of On-Line Databases," ACM
Transactions on Database Systems, v. 7, pp. 540-565, December
1982.

5. Cardenas, A., Alavian, F., and Avizienis, A., "Performance of
Recovery Architectures in Parallel Associative Database Processor,"
ACM Transactions on Database Systems, v. 8, pp. 291-323,
September 1983.

6. Hecht, M., and Gabbe, J., "Shadowed Management of Free Disk
Pages with a Linked List," ACM Transactions on Database Systems,
v. 8, pp. 503-514, December 1983.

7. Reuter, A., "Performance Analysis of Recovery Techniques," ACM
Transactions on Database Systems, v. 9, pp. 526-559, December
1984.

8. Bernstein, P., and Goodman, N., "An Algorithm for Concurrency
Control and Recovery in Replicated Distributed Databases," ACM
Transactions on Database Systems, v. 9, pp. 596-615, December
1984.

9. Agrawal, R., and Dewitt, D., "Integrated Concurrency Control and
Recovery Mechanisms: Design and Performance Evaluation," ACM
Transactions on Database Systems, v. 10, pp. 529-564, December
1985.

82



10. IBM Research Division, Report RJ 6649, ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging, by C. Mohan and others, pp.
1-45, 23 January 1989.

11. IBM Research Division, Report RJ 6650, ARIES/NT: A Recovery
Method Based on Write-Ahead Logging for Nested Transactions, by
K. Rothermel and C. Mohan, pp. 1-22, 23 January 1989.

12. The Ohio State University, Columbus, Ohio, Report OSU-CISRC-
TR-81-7, "Design and Analysis of a Multi-Backend Database System
for Performance Improvement, Functionality Expansion, and
Capacity Growth (Part 1), by D.K. Hsiao and M.J. Menon, August
1981.

13. The Ohio State University, Columbus, Ohio, Report OSU-CISRC-
TR-81-8, "Design and Analysis of a Multi-Backend Database System
for Performance Improvement, Functionality Expansion, and Capacity
Growth (Part 2), by D.K. Hsiao and M.J. Menon, August 1981.

14. Naval Postgraduate School, Report NPS52-83-003, "The
Implementation of a Multi-Backend Database System (MDBS). Part
III - The Message-Oriented Version With Concurrency Control and
Secondary-Memory-Based Directory Management," by Hsiao, D.K.,
Boyne, R.D., and Demurjian, S.A., pp. 1-89, March 1983.

15. Naval Postgraduate School, Report NPS52-84-005, "The
Implementation of a Multi-Backend Database System (MDBS): Part
IV - The Revised Concurrency Control and Directory Management
Processes and the Revised Definitions of Inter-process and Inter-
computer Messages," by Hsiao, D.K., Kerr, D.S., and Demurjian,
S.A., pp. 1-121, February 1984.

16. Hsiao, D.K., and Demurjian, S.A., "Towards a Better Understanding
of Data Models Through the Multilingual Database System," IEEE
Transactions on Software Engineering, v. 14, pp. 946-958, July 1988.

17. Rodeck, B.D., Accessing and Updating Functional Databases Using
Codasyl-DML, Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1986.

18. Korth, H.F., Silberschatz, A., Database System Concepts, McGraw-
Hill, 1986.

83



BIBLIOGRAPHY

Benson, T.P., and Wentz, G.L., The Design and Implementation of a
Hierarchical Interface for the Multi-Lingual Database System, M.S.
Thesis, Naval Postgraduate School, Monterey, California, June 1985.

Bernstein, P.A., Hadzilacos, V., and Goodman, N., Concurrency Control
and Recovery in Database Systems, Addison-Wesley, 1987.

Hsiao, D.K., Modern Database System Architectures, (Unpublished
Manuscript), March 1989.

Hsiao, D.K., Coker, H., and Demurian, S.A., The Multi-Model Database
System, Naval Postgraduate School, Report NPS52-87-026 June
1987.

Hsiao, D.K., and Kamel, M.N., Heterogeneous Databases: Proliferations,
Issues and Solutions, IEEE Transactions on Knowledge and Data
Engineering, KDE 1, 1 (June 1989).

Hsiao, D.K., Pitargue, M., and Wong, A., Reliable Broadcasting for Parallel
Database Backend Computers, Naval Postgraduate School, Report
NPS52-89-001, November 1988.

Zawis, J.A., Accessing Hierarchical Databases via SQL Transactions in a
Multi-Model Database System, M.S. Thesis, Naval Postgraduate
School, Monterey, California, December 1987.

84



INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5100

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. Curriculum Officer, Code 37 1
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5100

5. Professor David K. Hsiao, Code 52 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

6. CPT David E. Quantock 2
883 Jefferson Dr.
Greenville, MS 38701

7. Marciano Pitargue, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

8. Debbie Gaiser, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

9. Tom Chu, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5 100

85



10. Steven A. Demurjian, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

11. Timothy P. Benson
P.O. Box 1974
Woodbridge, Virginia 22193

12. Gary L. Wentz
111 Appian Way
Pasadena, Maryland 21122

13. Gary R. Kloepping
Route 1, Box 99
Santa Rosa, Texas 78593

14. John F. Mack
2934 Emory Street
Columbus, Georgia 31903

86


